
MASTER COPY K4EEPTHIS Copy Fog REPRODUCTI URPCF
Form Approved

REPORT DOCUMENTATION PAGE 7,MB No. 0704-0188

P•ohi repo)rting ourOen for this collectiOn of information is estimated to average i hour per resporst, Including the time for reviewing instructions. searching eaxsting data sourcirs.
gatherng and maintaining the data needed, and comoleting and reviewng the collection of information. Send comments regarding this burden estimate or any other asoect of this
collection of information. including suggestions' or rdu.ing ths burden. to Washington Headcuarters Services. Oirectorate for information Operations and Reolos. 1215 Jefferson
Oa.s H'ighway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reducteon Project (0704.0AI8). Washington. OC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

IMarch 31, 1994 Final Report
4. TITLE AND SUBTITLE s. FUNDING NUMBERS

Motion Planning and Sensory Processing in a Dynamic
Environment

6. AUTHOR(S)

Ren C. Luo 1 o 3-"-U - o03
David W. Hislop

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8

College of Engineering
Department of Electrical and Computer Engineering FEB 0 6 1994
Box 7911 0
North Carolina State University
Raleigh, NC 27695-7911

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) AGENCY R-E.u

U. S. Army Research Office GNYEOTUIER

P. 0. Box 12211
Research Triangle Park, NC 27709-2211 0/ O-6 757. 3-in /q

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation,

12a. DISTRIBUTION /AVAILABILITY STATEMENT I 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited
__ _ _ _ _ _ _ _ _ _ _ 19%50202 076

13. ABSTRACT (Maximu~m 200 words) 1 9 0 0 7

The objective of this research is to develop a sensor controlled intelligent mobile
robot system for operating in a dynamic environment. In contrast to approaches for
operating in a static environment, the proposed method is designed explicitly for
navigation in dynamic environments and is able to immediately modify its control
strategies in response to unexpected changes in the environment. The research herein is
divided into two major areas: motion planning and sensory processing. The motion
planning research introduces the concept of traversability vectors which can be used to
represent a dynamic environment, and uses a temporal reasoning scheme to plan the robot
motion. The primary research in sensory processing being the control or integration of
multiple sensors on the mobile robot so as to allow for their coordinated use for the
detection and avoidance of objects and obstacles in the environment.

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLAS K N 20. LIMITATION OF ABSTRACT
OF REPORT JOF ABSTRAC

UNCLASSIFIED I UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2'39)

Prescribed by ANSI Sia 139-.12918.102



MASTER COPY: PLEASE KEEP THIS "MEMORANDUM OF TRANSMITTAL" BLANK FOR REPRODUC-

TION PURPOSES. WHEN REPORTS GENERATE UNDER ARO SPONSORSHIP, FORWARD A

COMPLETED COPY OF THIS FORM WITH EACH REPORT TO OUR OFFICE. THIS WILL ASSURE

PROPER IDENTIFICATION.

MEMORA1UM OF TRANSMITTAL

U.S. Army Research Office
ATTN: SLCRO-IP-Library
P.O. Box 12211
Research Triangle Park, NC 27709-2211

Dear Library Technician:

Reprint (15 copies) m Technical Report J50 copies)

Manuscript (1 copy) Final Report (50 copies)

= Thesis (I copy)

MS r-[ PhD ]Other

TITLE: Mntinn Planning and Sensorv Procensina in a Dynamic Environment

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerely,

Ren C. Luo
Professor
Department of Electrical and Computer Engineeriný
North Carolina State University, Box 7911
Raleigh, NC 27695-7911

DO NOT REMOVE THE LABEL BELOW
THIS IS FOR IDENTIFICATION PURPOSES



I

Motion Planning and Sensory Processing

in a Dynamic Environment

A final report prepared by

Ren C. Luo

Center for Robotics and Intelligent Machines

North Carolina State University

Raleigh, NC 27695-7911
Acesion Fbr

NTIS CRA&M
DTIC TAB 0
Unannounced
Justificabun

Distribution r

Availability Cedes

Avail and/or
01St Special



Table of Contents

Statement of the Problem Studied ............................................................ 2

Summary of Most Important Results .......................................................... 3

Introd uction .............................................................................................. . . 3

1.1 Dynamic Global Motion Planning ....................................................... 4

1.2 Self-localization .................................................................................. 4

1.3 Reactive Navigation .......................................................................... 5

2. Environment Representation .............................................................. 5

2.1 Geometric versus Cellular ................................................................... 5

2.2 Configuration-Space-Time ................................................................. 6

2.3 Half-Planes and Traversability Vectors ............................................... 7

3. Global Motion Planning ...................................................................... 8

3.1 Global Motion Planning with the EVG ................................................ 10

3.2 Time Segmentation and Instance-Based Collision Detection ............ 11

3.3 Optimizing the Overall Route ............................................................ 13

4. Self-Localization ................................................................................. 13

4.1 Self-Localization with the Extended Kalman Filter ............................. 13

4.2 Self-Referencing ............................................................................... 14

5. Fuzzy Behavior Fusion for Reactive Navigation ................................ 15

6. Concluding Remarks .......................................................................... 16

Distributed Fuzzy Behaviors for Reactive Navigation ............................... 18

Fuzzy Controller Design .......................................................................... 18

The Fuzzy Control Bottleneck ................................................................. 19

Distributed Fuzzy Agents ........................................................................ 19

Fuzzy Behaviors ...................................................................................... 20



Fusion of Control Recom mendation ....................................................... 21

Im plem entation in a Reactive Task .......................................................... 22

List of Publications .................................................................................. 23

List of Participating Scientific Personnel .................................................. 25

Bibliography ............................................................................................ 26



Statement of the Problem Studied

The objective of this proposed research is to develop a sensor controlled intelligent
mobile robot system for operating in a dynamic environment. In contrast to
approaches for operating in a static environment, the proposed method is
designed explicitly for navigation in dynamic environments and is able to
immediately modify its control strategies in response to unexpected changes in the
environment.
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Summay of Most Important Results
The three central challenges to dynamic motion control of sensor-based

autonomous mobile robots involve finding optimal obstacle-free routing, updating

dead reckoning, adhering to a schedule and dealing with unexpected events such

as previously unknown moving obstacles. If a robot can reliably meet all of these

challenges simultaneously, it can be considered truly autonomous. The research
presented presented in this paper uses t-vectors, C-space-time and fuzzy behavior

fusion to improve the environment awareness and versatility of autonomous

vehicles. It is believed that this research helps extend the scope of mobile robots

closer to performing more sophisticated tasks in manufacturing, servicing,

hazardous environments and battlefields.

1. Introduction
Making a mobile robot autonomous entails simultaneously solving three

inherent problems: dynamic global motion planning, self-localization and

navigation. Hence, the three fundamental levels of dynamic motion control are:

(1) high-level dynamic motion planning for global routing; (2) mid-level self-

referencing for position/orientation/schedule updating; (3) low-level reactive

control with fuzzy behavior fusion. This paper discusses the research that has

been conducted in each of these areas at the Center for Robotics and Intelligent

Machines (CRIM) in simulation and on an actual mobile robot named MARGE

(Mobile Autonomous Robot for Guidance Experiments).

One reason few if any robots can claim to be truly autonomous is that most

research groups have focused only on certain aspects and ignored others. For

example, most work done in motion planning to date has typically ignored the

needs of self-referencing and vice versa. More specifically, global motion planning

has usually been confined to geometric environments because they minimize

computer storage and complexity. Self-referencing, on the other hand, has

typically been confined to cellular environments because they presumably facilitate

range predictability, sensor-based map construction and reactive/reflexive obstacle

avoidance. Such environmental differences, alone, conjure up an incompatibility

whenever motion planning and self-referencing are required to work in conjunction.

The research discussed in this paper has a number of immediate impacts

on autonomous robot tasking through: (1) increased reliability of environment
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traversal planning. The proposed levels of dynamic global motion planning and

navigation will eliminate the need for dedicated, preplanned routes that constrain

mobile robots whenever the environment unexpectedly changes. (2) Improved

system efficiency. All levels will utilize the same tools (i.e. remain compatible with

each other), require less data storage and have lower complexity than other

models presently permit. (3) Enhanced multitasking capabilities. With fuzzy

behavior fusion for reactive control, mobile robots will become capable of not only

traversing densely cluttered environments but also interacting with objects or other

robots in such environments.

1.1. Dynamic global motion planning
In dynamic global motion planning, the objective is to provide the best

guess at the shortest, collision-free overall routing based on the information initially

given to and ascertained by the robot. Such information typically includes obstacle

configurations and their time-varying trajectories. The first step in solving the

dynamic global motion planning problem is deciding how to represent the

environment so that it will accurately reflect the time-dependent surroundings and

provide the high-level motion planner with all necessary information. The second

step is being able to detect path-obstacle collisions. The third step is being able to

plan motion around these obstacles. Finally, the motion should be optimized in

terms of distance and time. Keeping data storage, processing time and complexity

to a minimum as well as remaining compatible with self-localization is important in

every step.

1.2. Self-localization
In self-localizatoin, the objective is to monitor the position, orientation and

schedule of the mobile robot. Referencing position and orientation relies on

sensory devices and confidence levels based on the quantity and quality of the

readings. The sheer variety of potential environmental changes is difficult to

pinpoint. So, too, is the variety of potential resulting sensor data patterns. It is,

therefore, important to represent the environment such that the density of

reference beacons is high enough that all reliable readings are predictable.

Another responsibility of the self-localizer in a dynamic environment is to track the

robot's position in the time domain to ensure that the robot is not too far ahead of

or behind schedule with respect to the planned avoidance of other moving

obstacles. The first step in solving the self-localizing problem is, as with motion

planning, representing the environment so that it will enable the self-referencer to
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predict and, hence, correlate sensor data for position/orientation updating in real-

time. The second step is for the robot to be capable of deciding how the

surrounding environment might have changed (if at all) and if such changes

warrant obstacle avoidance. The third step is to act as a conductor so that the

robot will not risk colliding with the very moving obstacles it had planned to avoid.

1.3. Reactive Navigation
In navigation, the objective is to control the motion of the mobile robot by

reacting to the immediate surroundings based on information from sensors, the

self-localizer and the global motion planner. Speed and turning should consider

and prioritize the following: node information from the global motion planner; the

self-localizer's confidence in position, orientation and schedule adherence; and the

sensed proximity of nearby objects. Solving the navigation problem does not

require the environment to be structured. It does, however, require that the robot

interpret noisy, incomplete sensor data and respond in real-time. A decentralized

control architecture based on fuzzy agents is used to smoothly arbitrate among the

sometimes contradictory types of motion requirements that occur when unmapped

or moving obstacles are present. The first step in solving the navigation problem

is to establish a set of fuzzy expert rules that govern the type of reaction the

mobile robot should have to stereotyped situations. The second step is to

implement a real-time control system that can infer from the expert rules an

appropriate reaction that will maintain motion fluidity.

2. Environment Representation

2.1. Geometric versus Cellular
The first issue that must be addressed when solving the motion planning

and self-localization problemis how to represent the environment. It was shown by

Jan6t, et. al. [Jan 93, Jan 94] that given the choice between cellular and geometric

environment representations, geometric models (polygons and/or polytopes) are

more preferrable as they reflect finely detailed objects more precisely, are simpler

to map (i.e. draw in CAD), facilitate feature inferencing for self-referencing and

consume less memory in general.



(a) (b)

Figure 1. (a) Geometric and (b) cellular representation of same object.

2.2 Configuration-Space-Time
Configuration-space-time (C-space-time) will be used to model the robot as

a compact point in space. This requires that the objects in the environment grow

by a buffer of thickness tb(robot radius plus a safety margin). The resulting path

polygon prevents the robot from colliding with the objects and provides a set of

potential paths for circumnavigation. There are two types of path polygon: the

corresponding path polygon and the space-efficient path polygon. As the name

implies, the corresponding path polygon has vertices that correspond to the actual

polygon's vertices. Corresponding path polygons have fewer vertices than their

space-efficient counterparts and hence require less memory. Despite the

somewhat more complicated math, space-efficient path polygons consume only

enough free space to prevent a robot-obstacle collision. As well, space-efficient

path polygons provide smoothly curved trajectories for the robot to travel around

edges.

obstacle obstacle
o o tb polygo tb

path path
polygon-- polygon---

(a) Corresponding (b) Space-efficient

Figure 2. The corresponding path polygon and the space-efficient path polygon.

The corresponding path polygon has the tendency to force the robot into a start-

stop-turn-start-stop-turn.., cycle. However, there is a way to provide smooth

trajectories even with the corresponding path polygons by using the same straight

line approximations for the space-efficient path polygon on the optimal route path

segments.

C-space-time buffers were shown to facilitate geometric beacon [Leo 91]

detection in self-referencing [Jan 93]. Also, unlike any of the global motion
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planning approaches mentioned later in this paper, C-space-time was proven

capable of coping with marginally traversable regions [Jan 94]. That is, where tight

passageways are normally closed to robot traffic through overlapping C-space-

time buffering, local modifications can be automatically made to permit the

cautious and deliberate flow of traffic. This is an attribute most motion planning

approaches fail to provide.

2.3 Half-Planes and Traversability Vectors
Recently the role of half-planes and traversability-vectors (t-vectors) [Pan

90] was expanded to yield a method of collision and visibility detection that is

faster, less volatile and more insightful than traditional algebraic methods [Jan 93,

Jan 94]. The impacts of t-vectors (and C-space-time) were shown to be significant

and extend equally into the realms of global motion planning and self-localization.

The following summarizes some of the benefits and applications of half-planes and

t-vectors. First, to detect a collision between a path segment and a static or

moving r-sided polygon, t-vectors require 7r+ 3 steps while traditional algebraic

methods require 12r + 2 steps. Path segments can be potential route legs to

motion planning or probes ("pseudo-paths") contained by a sensor window to

detect in-range objects for self-referencing.

Wi ll] \ [01010

[1001 1 I 1111 101 to / (X 1 1 1i+ IY i ) (X i+ 2 , Yi+ 2) (X +1, Y 4 .1) (x i +2 ,Y1 2 )

7
7 / (x, ,y,X (x,y)

/H~lll 11+13, i+31)

(I r 
(Xr y,) (XI, Y-)

"• 1 =[111Oh1!.+[ 111001k1•[11O111 ]

Figure 3. Two-step t-vector test detects path segment-polygon collision.

This reduction in complexity is the same for finding vertices and surfaces
that are visible to an arbitrary point in space (e.g. an ultrasonic transducer). Being
able to use t-vectors to eliminate vertices (edges) and surfaces (walls) that a
sensor cannot see benefits self-referencing by reducing the search time needed to
find the most reliable in-range feature. Since the manner in which a portion of
surface falls inside a sensor cone is important to predicting echo intensity, t-
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vectors further benefit self-referencing in defining which regions of the cone

covered by the surface. T-vector vertex visibility has been shown to benefit global

motion planning by identifying the optimal initial via points (also known as farthest

front vertices) that yield the most efficient route around an obstacle. By default,

any visible vertex that is not a farthest front vertex is considered redundant to keep

in memory as a potential leg of robot motion (as standard V-graphs do) since it will

simply never be used in optimized routes. Eliminating redundant path segments

from static V-graphs significantly reduce the data size and complexity of motion

planning. This will become clearer in the section on static global motion planning.

S[001111])\- [011110]

S •[llll00] Vertex S +Vi FFVs G +vi FFVG

vi [110111] YES [111111] NO\"Vx• G v2 [100111] NO [111111] NO
• , ~ v3 [10111 YES [11111 -NO

_TV4 1111111T. NT L1111 YES
Sv5 [111111]1 NO 1[111100]1 NM

v6v [111111 6NO[110101] YES

[110011] V/
[111001]

Figure 4. T-vectors find visible vertices, surfaces and optimal via points (FFVs
and FFVG).

3. Global Motion Planning
Compatibility issues aside, it can safely be said that most global motion

planning approaches are too time consuming, complex and memory- and free

space-hungry. Some cannot guarantee optimal path generation even for static

maps. Others are so rigidly defined that there is little or no allowance for on-the-fly

re-routing or marginally traversable regions. Previous motion planning approaches

have traditionally assumed that the obstacles in the environment must be

stationary with their position and orientations known exactly without further

changes; otherwise the graph created for path search may not be consistent with

the environment during the planning process.

Most approaches to solving global motion planning problems were

addressed in the work done by Hwang and Ahuja [Hwa 92] and Pan [Pan 90]. For

purposes of this paper the following approaches can be rejected based on their
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surveys: The Potential Fields approach is too computationally expensive and

limited in its planning capabilities. The World or Cell Decomposition approach to

motion planning, much like the cellular approach to environment representation,

fails in the way it approximates boundaries for self-referencing. Also, since the

convexity of objects is not used to determine paths, shortest paths are not always

generated. The Geometric Primitives approach is also frequently non-optimal and

risks not finding safe paths when the workspace is cluttered with closely spaced

objects. The Path-Network Learning approach requires the robot to make enough

trips through the environment to be capable of finding optimal or near-optimal

paths. Frequently, this does not occur because the robot travels previously

learned paths rather than exploring new ones.

Of course, this list does not fully encompass all possible motion planning

approaches. Several other approaches that were either not addressed by Pan or

Hwang and Ahuja or simply deemed worthy of greater focus were discussed in the

work done by Jan6t [Jan 94]. Considered in finer detail were the Visibility Graph

(V-graph) [Loz 79, Loz 87, Oom 87], the Voronoi diagram [Aur 91, Rao 88a, Rao

8b, O'Du 85, Yap 84, Tak 89 Ram 85], the Route Map [Pan 90] and the Extended

Tangency Graph (ETG) [Liu 90, Liu 91]. One advantage shared by all is the use of

geometrically represented environments which makes them compatible with self-

referencing. However, one extremely important disadvantage each shared is that

marginaly traversable regions (like doorways) were not accomodated for. Another

common disadvantage to these approaches, excludinging the Route Map, is that

collision and visibility detection is done with the overly complex and potentially

volatile algebraic method

There are numerous other disadvantages to using any of the

aforementioned global motion planning approaches as they are prescribed in the

literature. (For a more indepth analysis of each approach the reader is directed to

[Jan 94], [Hwa 93] and [Pan 90].) Hence, it was felt that a hybrid approach should

be developed that utilizes or improves the exactness of the V-graph, the safety

margin of the Voronoi diagram, the applicability to dynamic environments of the

Route Map and the space- and memory-efficiencies of the ETG. The result would

be a global motion planner that minimized data storage requirements and

algorithmic complexity to fulfill the high-level needs of dynamic motion control for

an autonomous mobile robots.
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3.1 Static Global Motion Planning with the EVG
A streamlined, appendable version of the V-graph called the Essential

Visibility Graph (EVG) was developed from a geometrically represented

environment, t-vectors and C-space-time to provide a static network of usable path

segments for exact routing [Jan 94]. For an environment of P polygons and N

vertices{IN 3P}, the EVG was shown to have a data size of O(P 2 +N). This is

a significant reduction from the 0(N 2 ) size of the V-graph and the O(PxN) size

of the nearest rival the ETG. It was proven by Liu and Arimoto [Liu 90, Liu 91] that

path networks free of redundancy require less memory storage, computation time

and sorting time.

Since t-vectors were shown to be the more efficient way of detecting and

eliminating redundant path segments from the EVG, at least a small reduction in

complexity can also be expected. Using t-vectors to include only farthest-front-

vertex pairs (non-redundant path segments) in the path segment network further

reduces the complexity of the EVG to O(kcN 3 ) where kc < 23. The more

congested and, hence, realistic the environment, the lower the constant kc.

Hence, kc is usually between 30% and 50% less complex than the O(N 3 ) of

standard V-graphs and the ETG. Reductions in path segment data storage of

networks for realistic maps are usually between 40% to 60% of the original V-

graph. Figure 5 pictoralizes these reductions. Figure 6 has applied EVG routing.

Figure 5. V-graph with redundant segments (left). Non-redundant EVG (right).

10



Figure 6. Routing from appended EVG network of CRIM environment.

3.2 Time Segmentation and Instance-Based Collision Detection
While it might be unrealistic to assume that one can accurately ascertain

the trajectories of other moving objects, the fact remains that actual environments
will indeed have them. Pan [Pan 90] showed that motion could be planned around
moving objects provided the C-space-time point trajectory m('r) and rotational

angular velocity dOldc about the C-space-time point were known. Pan also
assumed that at timer=r 0 the movable polygon has the model

A(TrO)x-c(rO)5'0 and the initial angular displacement for rotation is 0(T'o).
Again, whether it is better for a robot to try to incorporate estimated trajectories in

motion planning or simply employ collision avoidance behavior is debatable.
None-the-less, it is important to know that collisions can be detected between line

segments and both static and dynamic objects. Specifically, when in self-
referencing mode, the robot will be able to explain an otherwise unexpected close
sensor reading when it recognizes that a moving object had just passed through its
sonar cone. This will become more clear in the section on self-referencing.

Knowing a polygon's trajectory enables us to detect a collision between it
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and a path segment (or polygon edge) at a point in time. Factoring in a robot's
acceleration and velocity, collisions between a moving robot and a moving

obstacle can also be detected provided the robot's location and orientation are

known that point. To find out how long it will take for a robot to travel collision-free

along a given path segment, the path must be segmentized in the time domain.

Specifically, using the path/velocity decomposition method, we assume that the

path a robot intends to travel along is given as shown in figure 7.

robot 
2 S........ . .. . . . . . - 6.. .. . . . . . . . .
20

,8 --------- •.:

-oving"obstacle ,16 . ........... dby:

12 1•069
10 b...cW by

o tubs- clc I

movi obItacde 4 t o ng alý.2438 I~54 21.213 21.13.
2:141'211 14406 :

2 4 6 8 10 12 14 16 18 20 22 24 26 28

time (sec.)

Figure 7. Illustration of the motion planning problem with moving obstacles and a
displacement/time chart shows possible robot motion on segments.

The rest of the problem is to plan for the robot's velocity such that a safe motion is
obtained. Interference detection between the robot and moving obstacles is
performed at a sampling rate. The result is arranged into a grid representation.

Each grid is defined by the coordinates (d,t) where d is the displacement along the

path and t is time. When a collision is detected, the corresponding grid is labeled.

An intersection between the robot and obstacles is registered on the

costraint map for velocity planning. Complicated obstacle motions can be dealt

with by simply detecting collisions between polygons. Thus, velocity planning with

the constraint map is independent of obstacle motions. The constraint map is

naturally a discrete-time representation in which the accuracy depends greatly on

the time resolution. If the task of collision-detection can be performed efficiently,
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the grid representation can be more accurate by increasing the time-resolution.

3.3 Optimizing the Overall Route
With a static network and the known trajectories of other (known) moving

obstacles the network needs to be sorted by Dijkstra's greedy algorithm so that the

most efficient, overall route can be found [Baa 88, Hwa 91]. Weighting of the path

segments will be based on the shortest time required for the robot to travel along

that segment and prior connected segments.

4. Self-Localization
Conservative self-localization approaches require manually placed active or

semi-active beacons which are neither cost-effective nor efficient. Bolder self-

referencing approaches suffer in how they require user supplied environment

information, predict sensor readings and sample the environment at low

frequencies. Geometric beacon labels like "edge", "wall" and "corner" are

commonly used to explain discrepancies between actual sensor data and

predicted time-of-flight (TOF) measurements [Leo 91]. One problem with limiting

the list of geometric beacons to just these three features is that the potential

variance in data quality each can produce is substantial. Another problem is that

beacon density depends on either user supplied labeling or complex algorithms to

determine where one feature ends and the other begins. This problem is further

compounded if cellular maps are used.

A mobile robot must be able to maintain a dynamic memory of obstacles by

mapping and accepting into memory any previously unknown objects [Boz 91, Elf

87, Zel 91] and/or deleting from memory any removed objects [Eve 90, Leo 91b].

Perhaps of greater importance, the autonomous mobile robot must be capable of

confirming and adjusting its position and orientation in real time [Eve 90, Wan 91].

To effectively close the loop on position and orientation control a robust world

model must be initially be constructed such that it can be expediently searched

and used to calculate range data from identified features of geometric beacons.

Efficient data interpretation and position updating rely, of course, on the models

used to generate acceptable sensor ranges and the algorithms used to compare

those ranges with actual data and react accordingly [Cha 85, Kuc 89].

4.1 Self-Localization with the Extended Kalman Filter
Perhaps the most effective and reliable model to date is the Multiple
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Hypothesis Tracking (MHT) technique which employs Extended Kalman filtering
[Cox 91]. In short, the MHT is a stochastic, discrete-time approach that requires
objects to be represented geometrically and feaures labelled. Not only can it filter

data while comparing calculated and observed ranges, but it can also build maps.

Some problems inherent to approaches like the MHT are that feature labels (1)
need to be user-defined; (2) are usually sparsely placed; (3) do not encompass the

variety of potential range readings a sensor can get. These problems can be

accounted for, however, with the self-referencing approach discussed in the next
subsection.

Yw - Yw - - w -

%

L Xw

Figure 8. Using geometric beacons to reference position, orientation & schedule.

4.2 Self-Referencing
It was shown by Jan6t, et. al., [Jan 93] that every object in the environment

could be used as a geometric beacon through the use of sensor windows. If
feature labels were to be used, Jan6t, et. al., presented the necessary and simple

inference rules. However, it was later determined that range readings were less
dependent on feature type and more dependent on surface dimension, cone

penetration and reflective angle [Jan 94]. It was also shown that range readings
could be predicted more precisely using geometric representation. Finally, Jan6t,
et. al., showed that traversability vectors and configuration-space-time expedited

the search for geometric beacons. Figure 9 shows a simple example of planned
motion around tables, carts, boxes and barrels in one of the rooms in the Center
for Robotics and Intelligent Machines (CRIM). To test the sensor window method

of self-referencing, sonar data was calculated at frequent intervals travelled by our
mobile robot, MARGE (Mobile Autonomous Robot for Guidance Experiments).
The plot of figure 10 reinforces the use of sensor windows.
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Figure 9. Path from the southwest corner of CRIM room to the northeast corner.

PATH #1, PORT SONAR: Simulated vs Actual Sonar Ranges
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Figure 10. Plot shows correlation between calculated and sensed sonar data.

5. Fuzzy Behavior Fusion for Reactive Navigation
A recent trend in mobile robotics research has focused on real-time reactive
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control actions with independent behaviors called "schemas." Each schema

generates a potential field function for objectives such as goal seeking and

obstacle avoidance. These vectors are fused by a higher-level supervisor, which

assigns weights to the outputs of each behavior. The common feature of these

reactive methods is the speed and reliability with which they perform simple tasks.

The lack of a precise model of a mobile robot's environment provides

considerable incentive to the programmer to use fuzzy logic [Zad 65, Zad 88].

Fuzzy control has been explored for mobile robot guidance in simulations by

Ishikawa [Ish 91], Song and Tai [Son 92] and Pin, et al. [Pin 92]. Successful

hardware implementations have been realized by Sugeno, et al. [Sug 89], Pin, et

al. [Pin 92] and Konolige, et al. [Kon 92]. S.R.M.'s robot, "Flakey," [Kon 92] uses

fuzzy logic to define control behaviors for a variety of tasks. These behaviors are

switched on and off by a supervisory controller.

6. Concluding Remarks

The proposed research solves the global motion planning/self-

referencing/navigation problem in four steps: (1) environment representation; (2)

acquisition of global robot motion from a high-level dynamic motion planner; (3)

schedule tending and location of geometric beacons to be used as position and

orientation references while the robot traverses the environment; and (4) goal-

seeking and avoidance of unexpected obstacles from a low-level fuzzy logic based

reactive navigator. The environment will be represented geometrically since such

representation facilitates motion planning on both static and dynamic levels and

provides better surface information to sensors. All objects will be convex polygons

and represented by half-planes which can be time-varying when the environment

is dynamic. Traversability-vector (t-vector) theory will be used to yeild a more

efficient collision detection crucial to building an Essential Visibility Graph (EVG)

and determining which objects are within range of robot sensors. T-vectors can

also be time-varying and quickly indicate which portion of a polygon is visible to

robot sensors. Configuration space time (C-space-time) will be used to ensure a

collision free path around all objects, enhance the detectability of landmarks in the

environment, reduce the number of time segments needed to detect moving

obstacles and yield smooth turning trajectories.

On the highest level, a network of non-redundant path segments will
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efficient collision detection crucial to building an Essential Visibility Graph (EVG)

and determining which objects are within range of robot sensors. T-vectors can

also be time-varying and quickly indicate which portion of a polygon is visible to

robot sensors. Configuration space time (C-space-time) will be used to ensure a

collision free path around all objects, enhance the detectability of landmarks in the

environment, reduce the number of time segments needed to detect moving

obstacles and yield smooth turning trajectories.

On the highest level, a network of non-redundant path segments will

comprise the EVG which, when compared to other global motion planning

methods, is more compatible with the chosen self-referencing method and has

lower complexity and data storage requirements. Sensor windows will be used in

the mid-level self-referencing to accurately reflect sensor boundaries and

determine which geometric beacons are in range of mobile robot sensors. All tools

utilized in constructing the EVG will also be employed by the sensor windows.

Low-level motion control and (previously unmapped) obstacle avoidance will utilize

reactive fuzzy behavior control architectures to ensure smooth movement and

responsiveness to unexpected events.

While maximizing the motion-planning/self-referencing/navigation

compatibility is of prime importance, measures will also be persistently taken to

reduce complexity, data storage and processing time in general. Since real-time

performance is essential, no reduction in any of these will be considered too trivial.

Individually, motion planning performance will be judged by its ability to always

generate optimal paths and maximize the robot's ability to get position and

orientation information from objects in the environment. Self-referencing

performance will be judged by its ability to accurately predict real sensor readings

from objects within sonar range, confirm or modify its position/orientation and

modify the change of environment whenever new obstacles are found or old ones

removed. The rationale for this is as follows: if sensor readings are reliably

predictable, regardless of object type, every object in the environment can be used

as a landmark for self-referencing. Hence, there will be no need for expensive

active or semi-active beacons (e.g., IR docking beacons, RF triangulation, in-floor

guide wires or tracks and/or reflective path tape). Instead, the very objects that

are considered obstacles in motion planning will be considered passive geometric

beacons in self-referencing. Navigation will be judged by its ability to prioritize the

numerous and potentially conflicting demands from the global motion planning
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module, self-referencing module and on-board sensors to react in a fashion that

guarantees safe and smooth motion control.

Task 3: Distributed Fuzzy Behaviors for Reactive Navigation

A distributed, heterogeneous network of fuzzy controllers has been

developed for reactive behavior-based control of an autonomous mobile robot.
This methodology allows our vehicle, MARGE, to perform realistic tasks in

unstructured environments. Control actions for the robot are generated by a

colony of independent agents that compete and cooperate to determine the

emergent motion of the vehicle. Our multi-layer approach differs from other

methods that perform the fuzzy inference mapping in one step. We have

implemented and tested our system on a physical mobile robot with great

success. MARGE used fuzzy behaviors to win first place in Event III of the 1993

AAAI Mobile Robot Competition in Washington, D.C.

Fuzzy Controller Design

Fuzzy sets, originally developed by Zadeh [Zad 65] allow data to be

assigned a fractional degree of membership to a set. If a fuzzy set is named after

an adjective, then its membership function can be defined to reflect the similarity

between sampled data and the quality meant by the adjective. Fuzzy rules use

such sets in order to trigger a control response that increases in strength in

proporition to the similarity between the system's state and the adjectives used.

The application of multiple fuzzy rules results in multiple output recommendations
that must be combined. If each rule i prescribes an output value of outputi with an

antecedent certainty of weighti, then the output of the controller is calculated as:

#rules
I weighti 9 outputi

controloutput= i1 rules (32)
• weighti
i~l

Unlike traditional fuzzy logic schemes, our system defines the outputs of

fuzzy rules as singleton values, rather than fuzzy sets. In effect, our controller
design is only half fuzzy, with de-fuzzification accomplished directly by the

simplified centroid calculation. This greatly increases the speed at which fuzzy

rules can be processed without special hardware. It allows the system to scale well

and still be used for real time control. Such a scheme could not be used for a
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traditional knowledge-based or constraint-based fuzzy expert system, but it is

more than adequate for the colony of behavioral agents in our reactive system.

The Fuzzy Control Bottleneck

Previous fuzzy mobile robots, described by Sugeno, et al [Sug '89],

Konolige, et al [Kon 92], and Pin, et al [Pin 92], have demonstrated the utility of

fuzzy control, but the problem of scalability has plagued most implementations.
Most fuzzy control applications, such as a servo motor controller, involve a small

number of inputs and outputs, where the mapping from sensors to actuators is

accomplished in one step by a fuzzy rule base. This makes the complexity of the
rule base simple enough for the engineer to define rules manually. Mobile robots,

however, often feature many redundant sensors that provide different types of

information. It is often desirable to incorporate this data, as well as memory of past

experience, into the reactive control scheme.

Suppose we wish to design a controller for a system with N inputs, and
each input i is to be described by Mi fuzzy sets. A different rule may be written

for every intersection of set descriptions that describes the N inputs. This

exhaustive method yields a rule set of the following size:

N
#RULES= -'Mi (33)

i=1

Unfortunately, the number of fuzzy set evaluations in a rule base increases

exponentially as more inputs are added to the controller. In order to keep the rule

base manageable, other mobile robot implementations have reduced the input

space by throwing away what might otherwise be useful sensor data [8], [9].

Distributed Fuzzy Agents

Rather than reducing the input space of the fuzzy control system by non-

fuzzy means, we chose to develop a system that would process a large data

space with many independent fuzzy controllers. In the spirit of distributed

intelligence, multiple control recommendations are generated in parallel as

independent agents. These behaviors themselves can be made up of smaller

fuzzy behaviors, in a modular network. By feeding the output of one node into the

input of another, the mapping to be performed at each stage much simpler. This is

called fuzzy pre-processing, and is illustrated in Figure 20a. Not only can fuzzy
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rules accept the outputs of other controllers as inputs, but the output assignment of

a rule can be the output of another fuzzy node, rather than a fixed value. When

such a rule fires, the output of another control node is added into the centroid

calculation for the present node. This allows a control node to function as a fuzzy

multiplexer by making smooth transitions between multiple recommendations

according to qualitative rules. This effect is illustrated in Figure 20b.

Input A Input B

Data Preprocessing n tSpecialized Experts

Input C Input D ptE <ý

F2(C,D) F3(F1(A,B),E)

Expert Multiplexor

Figure 20. Fuzzy pre-processing and fuzzy multiplexing.
Note that such a multiplexing operation is possible with traditional fuzzy set

theory. However, the computational overhead usually associated with a chain of

fuzzy inferences (re-calculating the supporting membership at each step) makes

real time implementation difficult. Since our method only passes a singleton value

between nodes, we avoid this bottleneck.

Fuzzy Behaviors

In order to compute the robot's motor actions in a distributed manner,

individual behaviors are developed using one or more fuzzy controllers. Each

behavior makes a control recommendation based on its own limited input domain.

Examples of behaviors for MARGE include goal seeking, obstacle avoidance,

barrier following, and object docking. The obstacle avoidance behavior filters sonar

data and suggests an appropriate steering and drive velocity given the presence of

obstacles sensed by the vehicle's sonar. The goal-seeking behavior generates the

proper control values to attain a goal location, and barrier following stabilizes the

vehicle's motion with respect to straight walls. Object docking allows the robot to

manipulate objects, which is usually difficult for autonomous systems in unmapped

environments.
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Fusion of Control Recommendations
Multiple behaviors eventually must be fused to result in the vehicle's motion.

Many different schemes have been used for this in the literature, such as

hierarchical switching [Bro 86, Kon 92] and weighted summation [Ish 91]. Our

approach combines these techniques by using additional fuzzy controllers acting

as fuzzy multiplexers to perform the fusion operation. Each fuzzy multiplexer may

use sensor values, motivational state values, or the values of the sources

themselves as inputs to its rule base. This allows behaviors to be smoothly

blended. The networks shown in Figure 21 illustrate the behavior fusion scheme

that allows MARGE to travel among obstacles in search of a goal location.

Lot LotDag Frari RWgoAg PigotaMFil o

Figure 21. Hierarchy for fuzzy control of drive velocity and steering.

Sometimes, two behaviors may command opposite actions that would

combine to form an ineffective control value, or a situation may arise where no
clear choice is obvious. This can occur when a mobile robot meets an unexpected

obstacle head on, for example. To recover from such situations, the control

function must adapt by changing its control surface. One way to acheive this is by

modellling internal motivation, such as frustration. On our robot, if a situation of

indecision occurs and the robot cannont proceed, a random value is added in to
the steer controller until the robot breaks out of its predicament. The gain of the

random value increases with the "frustration" level, and the value changes to
prevent endless loops in a local area.

Although the basic behaviors employed on MARGE are primitive, their
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combined operation results in very powerful activity. For example, if a goal location

exists on the other side of a barrier as depicted in Figure 22, the obstacle

avoidance and goal seeking behaviors compete. This causes the robot to follow

the barrier until it finds its way around it. Concave obstacles are easily escaped,

and dynamic obstacles are dealt with in real time.

D 1
r---7

I~ 12

SArt

Figure 22. Goal seeking and obstacle avoidance behavior with no goal.

This behavior allows the robot to circumnavigate unmapped obstacles en

route to a goal location. Even with no explicit goal, the robot may safely wander

through its natural habitat, as shown in Figure 22. Note that this data is not the

result of simulation, but was recorded by observing the actual motion of MARGE

wandering through our laboratory.

Implementation in a Reactive Task

In order to test our system and compare it to others, MARGE was entered

in the 1993 Mobile Robot Competition hosted by the American Association for

Artificial Intelligence in Washington, D.C. The competition consisted of three

events; MARGE won first place in the final event, "Office Rearrangement." This

involved rapidly searching for and moving large boxes around obstacles into a

prescribed pattern. The initial and final configurations of the competition arena are

shown in Figure 23. Boxes were marked on one or two sides with 'X' and '+' signs.

Such a task required a diversity of capabilities: visual target recognition, goal

seeking, obstacle avoidance, position re-referencing, and environment

manipulation. The fact that the objects and obstacles were randomly placed

meant that building and maintaining a map would be difficult. Fortunately,
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MARGE's reactive control architecture does not need a map to behave in a

competent manner.

Our competition strategy was simple: A landmark recognition algorithm

running on one processor was used to find signs and estimate their position in the

room. These coordinates were then used as destinations for the goal seeking

behavior. The robot wandered through the arena, avoided obstacles and traveled

a serpentine path in order to cover a wider area with its cameras. When the

landmark recognition program detected a sign, the fuzzy goal seeking behavior

would drive to the box location. Once in range, the vehicle turned around to grab

the boxes with its vacuum gripper, and towed them to the goal coordinates.

MARGE was the only robot to reliably move boxes around obstacles or complete

the task within the time limit. Details of this competition will are available in [ ].

Do
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Figure 23. Initial layout of competition and completed box pattern.
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